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1 Introduction

In 1928, André Lévêque defended his PhD thesis in Paris. Its title was Les
Lois de la Transmission de Chaleur par Convection - The Laws of Convective
Heat Transfer - and it was published that same year in Annales des Mines,
the famous French mining engineering journal [3]. Lévêque’s contribution
to engineering was to show people how to think in a new way about how
heat moves across a thin layer of fluid close to a wall.

2 The Poiseuille Problem

Most researchers who know of André Lévêque do so because of an idea
he presented on p285 of his thesis, about heat transfer close to walls in
certain Poiseuille flows [3]. A Poiseuille flow is characterised by laminar
flow through a pipe or a channel. According to Schlichting [6], Lévêque,

introduced the very reasonable assumption that the whole of the
temperature field is confined inside that zone of the velocity field
where the longitudinal velocity component u is still proportional
to the transverse distance y.

That is, the velocity profile is approximated as being linear very close to
the surface. This was true only for Poiseuille flows of large Prandtl number,
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where the fluid temperature changes faster with distance y from a hot wall
than the fluid velocity does. Lévêque demonstrated this as follows. In a
Poiseuille flow, the actual velocity profile is parabolic and takes the form
[3, 4, 1]:

u(y) = u0

(
1 − (h− y)2

h2

)
(1)

where u0 is the maximum velocity, at the centre of the channel, y is the
distance normal to the wall, and h is the half-height of the channel or the
radius of the pipe, where the velocity is u0. By rewriting this last equation
in terms of y/h,

u(y) = u0
y

h

(
2 − y

h

)
(2)

Lévêque [3, pp 284-287] observed that for flows of large Prandtl number,
convective heat transfer is affected only by the velocity values very close to
the surface of the pipe. In this region, y/h is small and,

u(y) = 2u0
y

h
≈ βy (3)

Where βy is the wall tangent of the fully developed parabolic veloc-
ity profile. With this simplification for u(y), which we can name for him,
Lévêque arrived at an asymptotic solution for high Prandtl number heat
transfer into a fully developed Poiseuille flow [4]. It is the simplification of
the velocity profile that Lévêque is remembered for.

3 The Boundary-Layer Problem

3.1 Lévêque

Schlichting’s reference to André Lévêque [6, Chap. 12, p291] needs qualifica-
tion. Lévêque did not solve a thermal boundary-layer problem; his solution
was specific to heat transfer into a Poiseuille flow [5]. In this type of flow, u
is a function of y only, it does not change with streamwise location x.

3.2 Schuh

Schuh [8, 7] observed that in a boundary-layer, u is again a linear function
of y, but that in this case, the wall tangent is a function of x, the distance
along the wall. He expressed this with a modified version of Lévêque’s
profile, u = β(x)y, and used this linear velocity profile to tackle the problem
of heat-transfer across laminar boundary-layers. Schuh does not reference
Lévêque in his paper but he had the same insight as Lévêque did in 1928,
explaining:
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On inspection of some solutions ... the thickness of the thermal
boundary layer is found to be become small compared to the
velocity boundary layer if either n or Pr (Prandtl number) be-
comes large. Then it is sufficient to replace the velocity profile
by its tangent at the wall, since, for calculating the temperature
field, only that part of the velocity profile is of influence that lies
within the thermal boundary layer.

Lévêque and Schuh’s simplifications work for large Prandtl number or in
any situation when the momentum boundary-layer thickness is greater than
the thermal boundary-layer thickness. This also works well for low Prandtl
numbers, though not when the Prandtl number is very much less than one
[4].

3.3 Kestin-Persen

Kestin and Persen’s 1962 paper was wider in scope, describing large Prandtl
number solutions for many different wall temperature distributions [2]. Schuh’s
work considered a single distribution. Without referencing Schuh or Lévêque,
Kestin and Persen state (p357):

The second simplification consists in the fact that the variation
of u with y is linear.

and, like Schuh, they write this in the form u = β(x)y. For the problem of
a flat plate with a temperature jump at x = x0, they propose a substitution
that reduces the parabolic thermal boundary-layer equation to an ordinary
differential equation. The solution to this equation, the temperature at any
point in the fluid, can be expressed as an incomplete gamma function.

3.4 Schlichting

After Kestin and Persen, and crediting Lévêque and Schuh, Schlichting pro-
poses an equivalent substitution that reduces the thermal boundary-layer
equation to an ordinary differential equation whose solution is the same in-
complete gamma function [6, Chap. 12, Thermal boundary layers in laminar
flow, p291, Eq. 12.60].

4 Conclusion

4.1 Lévêque’s Technical Contribution

André Lévêque seems to have been the first to observe that when the tran-
sition from surface to freestream temperature takes place across a very thin
region close to the surface, the most important fluid velocities, those inside
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this very thin region, change linearly with normal distance from the sur-
face (i.e. u = βy, where is the wall tangent). Schuh also saw this and,
in 1953, showed how to apply this idea to boundary-layers, with the mod-
ification that the wall tangent is a function of x, u = β(x)y. Kestin and
Persen come to this idea independently, outlining with clarity the solution
that Schlichting describes in Boundary-Layer Theory. This solution, of the
thermal boundary-layer equation for flows of large Pr, appears to be Kestin
and Persen’s, not Lévêque’s.

4.2 A Brief Sketch of Lévêque’s Life

André Marcel Lévêque in 1896 in Beauvais to Henri and Blanche Lévêque.
He fought throughout the First World War, becoming an officer and earning
a Croix de Guerre. After the war he studied at the École Polytechnique and
at the École des Mines. He married Clotilde Foret in 1925 in Béthune. He
presented his doctoral thesis in 1928. He had two children; one, a daughter,
died aged three, in the same year as his thesis defence. His son, Jean, was
born in 1929. André Lévêque died tragically from tuberculosis in 1930, aged
33. He is buried in Beauvais1.
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